Autor/es reacciones

Carlos Pobes

Postdoctoral researcher of the Q-MAD group at the Institute of Nanoscience and Materials of Aragon (INMA)
 

IceCube is a fascinating instrument. In its ten years of operation, it is producing incredible results, even beyond expectations. Although it has already more than fulfilled its mission with the detection of the first ultra-energetic neutrinos and the identification of their possible origin in 2017, it has continued to provide very relevant information about the physics of neutrinos, dark matter or, as in this case, quantum gravity theories. 

Quantum gravity proposals have generally remained in the realm of theoretical physics, but the birth of multimessenger astronomy (light, neutrinos, cosmic rays and gravitational waves) opens up the possibility of using these particles to test some of their predictions. In particular, very slight disturbances in the propagation of these particles through space are predicted, which are amplified over the long distances they travel to Earth and could therefore be observable. This is the basis for numerous Lorentz invariance violation tests, such as the one published by the IceCube experiment. The study is very thorough, despite having to use some simplifications. What is relevant is that the results are now starting to be competitive with other experiments, despite the fact that the number of neutrinos is quite small. I think that this result makes the extension of the telescope that will be built in the next few years even more interesting, and I am sure that it will continue to give very good results.  

It should also be noted that this is one of those cases in science of a major negative result. That is, no quantum gravity effect has been observed, but this limits any theoretical proposal that predicts an effect larger than the limits that have been published, which allows us to begin to restrict some models. 

EN