M. Julia Flores Gallego
Profesora titular, subdirectora del departamento de Sistemas Informáticos de la Universidad de Castilla-La Mancha y miembro del grupo de investigación Sistemas Inteligentes y Minería de Datos
Las redes neuronales, desde sus inicios, años 50 aproximadamente, han estado ligadas a la disciplina de Inteligencia Artificial (IA). Como la IA, ha vivido periodos de euforia y otros de estancamiento, por ejemplo, hizo falta disponer del algoritmo de retropropagación para permitir que aprendieran. La idea es tan sencilla como funcional: intentar replicar una neurona humana de manera matemática. Uno de los grandes avances, en los 2000 fue el aprendizaje profundo, donde Hinton, junto a otros investigadores, iniciaron una revolución que, a día de hoy, nos sigue impactando.
Hinton es uno de los fundadores del aprendizaje profundo (más conocido por su término inglés, Deep Learning). Comenzó a aplicarse con gran éxito en la clasificación automática de imágenes, posteriormente empezó a aplicarse sobre problemas secuenciales (audio, vídeo, etc.) y ha sido una continua evolución para dar el salto a la generación de contenido, siendo especialmente conocidas las GAN. Los modelos de lenguaje extensos (LLMs en inglés) junto con los ‘transformers’ nos llevaron a construir modelos tipo GPT, que todos conocemos.
Actualmente la IA generativa y su potencial están en boca de todos. El avance en los componentes hardware, la gran cantidad de datos y algoritmos diseñados y optimizados específicamente han favorecido esta nueva tecnología. Creo que es un reconocimiento sobradamente merecido, ya que todas estas técnicas se sustentan en las redes neuronales. Personalmente, me ha sorprendido la noticia. Las dos personas premiadas han sido piedras angulares en el desarrollo de las redes neuronales y en su aprendizaje a partir de datos (machine learning). Lo percibo como un premio a todos los que, de una forma u otra, han contribuido a avanzar en la IA y en su uso en positivo para nuestra sociedad.