Un modelo de aprendizaje automático puede usar datos sobre la edad de las personas, la duración de la adicción al tabaco y la cantidad de cigarrillos fumados al día para predecir el riesgo de cáncer de pulmón e identificar quiénes necesitan someterse a un cribado, según un nuevo estudio publicado en PLOS Medicine.
Isabel Portillo - cribado cáncer pulmón
Isabel Portillo
Coordinadora de los Cribados de Cáncer colorrectal y prenatal del Servicio Vasco de Salud-Osakidetza, investigadora del grupo Biomarcadores en Cáncer del Instituto de Investigación Sanitaria Biobizkaia y secretaria de la Junta Directiva de la Sociedad Española de Epidemiología
El estudio ha sido realizado utilizando datos de diferentes fuentes aplicando modelos matemáticos. No añade valor a lo ya publicado sobre factores de riesgo conocidos.
La calidad de los análisis es susceptible de ser mejorada, dado que finalmente solo utiliza tres variables predictivas (edad, duración del hábito tabáquico y paquetes al año). Estos factores parecen insuficientes para determinar el riesgo, dado que tanto el sexo como el nivel socioeconómico deben ser tenidos en cuenta para determinar y aconsejar un cribado individualizado.
El trabajo está en consonancia con la evidencia (ensayos clínicos), si bien no aporta nuevas evidencias a las publicadas (NELSON, NLST,PLCO). Por otra parte, los autores comparan estudios de poblaciones diferentes, lo que puede representar un sesgo de diseño del estudio. Los modelos matemáticos son difíciles de interpretar con mis conocimientos de este ámbito, ya que se precisan bioestadísticos y bioinformáticos para valorar los ajustes realizados y la validación de los modelos.
A pesar de que los autores lo presentan como una herramienta de predicción, su aplicabilidad a nivel práctico (profesionales de salud) es discutible en el caso de indicar a una persona el cribado (TAC-baja dosis). Debería ajustarse para ser una herramienta de ayuda tanto a profesionales como a pacientes (estudio Framingham de riesgo cardiovascular). Biomarcadores, factores ambientales, laborales deben ser considerados.
“Formo parte del Estudio LUCIA (Lung Cancer Risk Factors and their Impact Assessment) Horizon EU que pretende identificar factores de riesgo aplicando también modelos matemáticos predictivos”.
- Artículo de investigación
- Revisado por pares
- Modelización
Callender et al.
- Artículo de investigación
- Revisado por pares
- Modelización